

Passant	Exigen	ces((%)
(%)	min.	max.
100		
100		
100	100	100
100		
100	90	100
90		
70	60	90
56		
38	30	60
21		
17	15	40
11		
8	5	20
6		
4,9	2	8
	(%) 100 100 100 100 100 90 70 56 38 21 17 11 8 6	(%) min. 100 100 100 100 100 100 100 90 9

	POURCENTA	GES DES FRAC	TIONS GRANULO	MÉTRIQUES	
FRACTI	ON FINE		FRACTION	GROSSIÈRE	
Argile (%)	Silt (%)	Sable (%)	Gravier (%)	Cailloux (%)	Blocs (%)
N/A	4,9	33,1	62,0	0,0	0,0
D ₁₀ (mm)	D ₃₀ (mm)	D ₆₀ (mm)	C _u	C _C	W _n (%)

21,22

2,50

2,4%

11,14

	ESSAIS	DIVERS	
Essai	Norme	Résultat(s) mesuré(s)	Exigence(s)
Micro-Deval	LC 21-070	23 %	≤ 25 %
Los Angeles	LC 21-400	20 %	≤ 50 %
Micro-Deval et Los Angeles	-	43 %	≤ 70 %
Particules fracturées	LC 21-100	100 %	100 %
Proctor modifié (152 mm)	BNQ 2501-255	2 295 kg/m³ à 5,3 %	-
IPPG (étape 1)	BNQ 2560-510	À venir	≤ 10

REMARQUES

3,82

Préparé par: M. Gregory Pereira, T.P. Approuvé par: M. Gregory Pereira, T.P.

(2019-04-01)

0,53

Date: 13 mars, 2023

Monsieur Louis-Pierre Lafortune 9403-2273 Québec inc. Carrière Urbaine Montréal Ouest 250, boul. Saint-Elzéar Ouest Laval, Québec H7L 3P2 Montréal, le 13 mars 2023

Par courriel: estimation@valosphere.com

Objet: 5758 MG31,5, DB

Matériaux concassés de calibre MG-31,5, DB (± 25 000 t.m.)

Provenance: Divers chantiers

Concassés sur le site de la Carrière Urbaine Montréal-Ouest

671, rue Paré, Montréal, Québec H4P 2R3

N/Réf. : **5758**

Monsieur Lafortune,

Suite à votre demande, nous avons réalisé le montage d'un certificat de conformité pour vos matériaux mentionnés en objet provenant de la Carrière Urbaine Montréal Ouest, situé au 671, rue Paré à Montréal. Les matériaux bruts concassés sont issus des déblais de dynamitage de divers chantiers. Ce certificat de conformité a été réalisé conformément aux exigences du «BNQ 2560-114/2014», du «BNQ 2560-510/2003» et du «DTNI-10C» du document technique normalisé infrastructure de la ville de Montréal.

En résumé, nous avons compilé l'ensemble des analyses granulométriques et classification effectuées pour ces matériaux ainsi que la réalisation de tous les essais de caractérisation nécessaires. D'après les informations obtenues, la réserve est évaluée à environ 25 000 tonnes métriques pour le matériau de calibre MG-31,5, DB. Ce matériau a été produit selon les exigences de mise en réserve du BNQ. Vous trouverez tous les documents pertinents à ce certificat en annexe à cette lettre.

À noter que les échantillons ont été prélevés et apportés au bureau de Montréal par un représentant de notre laboratoire (SCP Geotek inc.). Les informations sur l'emplacement de la réserve ainsi que l'emplacement de chaque échantillon dans cette même réserve ont été fournis par notre laboratoire (SCP Geotek inc.).

Suite à l'interprétation des résultats :

- Les résultats d'analyse granulométrique (± 25 000 t.m.) sont conformes aux exigences de la norme DTNI-10C (tableau 1): MG-31,5, DB;
- Les résultats des caractéristiques des granulats (± 25 000 t.m.) sont conformes pour un granulat de catégorie
 1 selon les exigences de la norme DTNI-10C (tableau 2) : MG-31,5, DB;

5758_MG31,5, DB Matériaux concassés de calibre MG-31,5, DB (± 25 000 t.m.) Provenance: Divers chantiers Concassés sur le site de la Carrière Urbaine Montréal-Ouest

671, rue Paré, Montréal, Québec H4P 2R3

Le résultat de l'IPPG étape 1 (25 000 t.m.) est conforme pour un granulat DB selon les exigences de la norme BNQ 2560-510/2003 (tableau 2): MG-31,5, DB (Résultat à venir).

Nous espérons le tout à votre satisfaction et demeurons à votre disposition pour toute information additionnelle. Veuillez agréer, Monsieur Lafortune, l'expression de nos sentiments distingués.

SCP Geotek inc.

Préparé / Approuvé par :

Gregory Pereira, T.P.

Directeur - Associé

Contrôle des Matériaux

#OTPQ: 20344

ANNEXE 1

Compilation des résultats des essais sur granulats

COMPILATION DES RÉSULTATS DES ESSAIS SUR GRANULATS

	Numéro de dossier:	5758
Projets: Carrière Urbaine Montréal-Ouest	Numero de dossier.	3736
Certificat de conformité	Date de la révision:	13 mars 2023

	Ochinical de comorrinte						Duto u	J IG ICVI	0.0	10 mai	0 2020	
		RENSEIGNEMEN	T SUR LES MATÉ	RIAUX		[ÉCHA	NTILLC	N (LC-2	21-010)	
Type:	Pierre concassée	Calibre:	MG-31,5, DB	Tonnes total:	25000			6,1		6,2	4	6,3
Provena	nce: Divers chantier, conca	ssée à la Carrière U	Jrbaine Montréal-C	uest				6,4		6,5		6,6

N° d'Échant.	Date d'Échar	Prélev	Tonnage Cumul.					F	_		ulométr) Passa			n)				
u Echant.	u Lenai	it. i ai	Approx.	112	80	56	40	31,5	20	14	10	5	2,5	1,25	0,630	0,315	0,160	0,080
5758_MG20_01	2023-02-	27 D.S.	2500	100	100	100	100	100	90	68	49	36	19	16	9	7	6	4,8
5758_MG20_02	2023-02-	27 D.S.	2500	100	100	100	100	100	90	69	56	35	20	15	10	8	6	5,5
5758_MG20_03	2023-02-	27 D.S.	2500	100	100	100	100	100	91	68	50	35	19	15	7	6	5	4,2
5758_MG20_04	2023-02-	27 D.S.	2500	100	100	100	100	100	91	71	55	36	20	15	10	8	6	4,1
5758_MG20_05	2023-03-	13 D.S.	2500	100	100	100	100	100	91	72	56	37	22	17	11	9	7	5,8
5758_MG20_06	2023-03-	13 D.S.	2500	100	100	100	100	100	90	71	60	41	25	20	15	10	8	6,1
5758_MG20_07	2023-03-	13 D.S.	2500	100	100	100	100	100	92	73	61	44	26	19	15	10	6	4,6
5758_MG20_08	2023-03-	13 D.S.	2500	100	100	100	100	100	91	69	58	43	21	18	14	8	5	4,8
5758_MG20_09	2023-03-	13 D.S.	2500	100	100	100	100	100	91	70	59	39	17	15	10	7	5	4,1
5758_MG20_10	2023-03-	13 D.S.	2500	100	100	100	100	100	90	71	60	38	20	16	9	7	5	4,5
Exigence		Mo	yenne					100	91	70	56	38	21	17	11	8	6	4,9
la norm BNQ 2560-11	-	Exigences	Minimum			100		90		60		30		15		5		2,0
10C	., ., ., .,	LAIGETICES	Maximum			100		100		90		60		40		20		8,0

Remarques: —				
Remarques.				
Préparé par:	M. Gregory Periera, T.P.	Approuvé par:	M. Gregory Pereira, T.P.	Date: 17 mars, 2020

(2020-03-17)

ANNEXE 2

Compilation des résultats des essais intrinsèques

COMPILATION DES RÉSULTATS DES ESSAIS SUR GRANULATS

·-	9403-2273 Québe								- Numéro de do:	ssier: 5758	
Projets: -	Carrière Urbaine N		est						_		
	Certificat de confo	rmité							Date de la révi	sion: 13 mars	s 2023
		RI	ENSEIGNEMEN	T SUR LES MA	TÉRIAUX				ÉCHA	NTILLON (LC-2	21-010)
Type:	Pierre concassée		Calibre:	MG-31,5, DB	Tonne	s total:	25000		6,1	6,2	6,3
Provenanc	e: Divers chantie	r, concassée a	à la Carrière Urba	ine Montréal-Oue	st				6,4	6,5	
				l	l						
N° d'Échan	Date t. d'Échant.	Prélevé Par	Tonnage Approx.	Micro-Deval LC 21-070 (%)	Los Angeles LC 21-400 (%)	M.D. + L.A. (%)	Particules fracturées LC 21-100 (%)	Particules plates LC 21-265 (%)	Particules allongées LC 21-265 (%)	Proctor modifié BNQ 2501-255	IPPG BNQ 2560-500/500
5758_MG20	_01 2023-02-27	D.S.	2500	21	20	41	100			2 295 kg/m3 @ 5,3 %	1
5758_MG20	_06 2023-03-13	D.S.	15000	23	19	42	100				
5758_MG20	_10 2023-03-13	D.S.	25000	24	20	44	100				
		•	Moyenne:		20 ≤ 50%	42	- 100%			n/a	1 ≤10
Remarque Préparé pa		ory Pereira,	Exigences:		ıvé par:	≤ 70% M. Gred	gory Pereira, T.F).	Date:	n/a 13 mars, 2023	2 10

Rapport n° 2300145

EXAMEN PÉTROGRAPHIQUE DU POTENTIEL DE GONFLEMENT, BNQ 2560-500/510

N° Dossier: F2300342-002 Type matériau: Pierre concassée

N° Laboratoire: 23-00449 Calibre: MG-20 Client: **SCP Geotek** Usage: Adresse: 1505, rue Dickson, suite 101 Prélevé par: Client Ville: Montréal Reçu labo le: 2023-03-08 Code postal: H1N 3T4 Provenance: C.U.M.O.

Projet: C.U.M.O. Localisation: MG20_5758-01

Site: PO-5758 Essai(s) complété(s) le: 2023-03-13

Tableau des résultats

	Tamis (mm	31,5	20	14	10	5	2,5	Masse a	avant tamis	age (g)
Pourcent	age passant (%	100%	71%	69%	68%	24%			3116,3	
	sse sur tamis (g		894,2	77,5	21,1	1363,4			Total	
M	lasse utilisée (g)	872,7	75,6	20,7	329,9			2356,2	
Type de faciès	IP			Mass	e (g)			%	IPPG	
Calcaire, de couleur gris, dur	0.00		817,2	53,3	17,4	295,5		90,4	0,0	
Calcaire, de Couleur gris, dui	0,00		93,6%	70,5%	84,1%	89,6%		90,4	0,0	
Calcaire avec placage argileux	0.10		55,5	22,3	2,3	21,2		7.0	0.7	
mince, de couleur grise, dur	0,10		6,4%	29,5%	11,1%	6,4%		7,2	0,7	
Roches ignées felsiques, de couleur	0,00					9,7		1.7	0,0	
gris beige, dures	0,00					2,9%		1,7	0,0	
Shale, de couleur gris foncé, mou et	1.00				1,0	3,5		0.7	0.7	
friable	1,00				4,8%	1,1%		0,7	0,7	
Indice pétrographique du potentiel	de gonflement	(IPPG)				'			1	

Remarque: Le matériau analysé (IPPG considéré négligeable) est conforme et accepté à l'étape 1 du document BNQ 2560-500.

	Catalie	# 592			
Préparé et approuvé par:		OEBE	Date:	2023-03-13	
	Katie St-Amand, géo. M.	.Sc. OGQ # 592			

Notes : Le résultat s'applique exclusivement à l'échantillon analysé.

ANNEXE 3

Certificat d'analyse chimique

NOM DU CLIENT: LE GROUPE SCP ENVIRONNEMENT INC 1505, RUE DICKSON, SUITE 101 MONTREAL, QC H1N 3T4 (514) 722-1451

À L'ATTENTION DE: Gregory Pereira

N° DE PROJET: 5758

N° BON DE TRAVAIL: 23M004215

ANALYSE DES SOLS VÉRIFIÉ PAR: Amar Bellahsene, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: Robert Roch, Chimiste, AGAT Montréal

DATE DU RAPPORT: 10 mars 2023

NOMBRE DE PAGES: 11 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (514) 337-1000.

- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1

Avis de non-responsabilité:

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y
 limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de
 toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.
- Pour les échantillons environnementaux dans la province de Québec: L'analyse est effectuée et les résultats s'appliquent aux échantillons tels que reçus. Une température supérieure à 6°C à la réception, comme indiqué dans la notification de réception d'échantillon (SRN), pourrait indiquer que l'intégrité des échantillons a été compromise si le délai entre l'échantillonnage et la soumission au laboratoire ne pouvait être minimisé.

AGAT Laboratoires (V1)

Page 1 de 11

N° BON DE TRAVAIL: 23M004215

N° DE PROJET: 5758

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: LE GROUPE SCP ENVIRONNEMENT INC PRÉLEVÉ PAR:G.P.

À L'ATTENTION DE: Gregory Pereira LIEU DE PRÉLÈVEMENT: C.U.M.O.

PRTC - Métaux Extractibles Totaux (sol)

DATE DE RÉCEPTION: 2023-03-09

DATE DU RAPPORT: 2023-03-10

IDENTIFICATION DE L'ÉCHANTILLON: MG20-5758-01 MG20-5758-02

					IDENTIFIC	CATION DE L'É	CHANTILLON:	MG20-5758-01	MG20-5758-02
							MATRICE:	Sol	Sol
					D	OATE D'ÉCHAN	TILLONNAGE:	2023-02-24 13:25	2023-02-24 13:25
Pa	ıramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	4838331	4838346
Argent		mg/kg	2	20	40	200	0.5	<0.5	<0.5
Arsenic		mg/kg	6	30	50	250	5	<5	<5
Baryum		mg/kg	340	500	2000	10000	20	121[<a]< td=""><td>78[<a]< td=""></a]<></td></a]<>	78[<a]< td=""></a]<>
Cadmium		mg/kg	1.5	5	20	100	0.9	<0.9	< 0.9
Chrome		mg/kg	100	250	800	4000	45	<45	<45
Cobalt		mg/kg	25	50	300	1500	15	<15	<15
Cuivre		mg/kg	50	100	500	2500	40	<40	<40
Étain		mg/kg	5	50	300	1500	5	<5	<5
Manganèse		mg/kg	1000	1000	2200	11000	10	283[<a]< td=""><td>261[<a]< td=""></a]<></td></a]<>	261[<a]< td=""></a]<>
Molybdène		mg/kg	2	10	40	200	2	3[A-B]	<2
Nickel		mg/kg	50	100	500	2500	30	<30	<30
Plomb		mg/kg	50	500	1000	5000	30	<30	<30
Sélénium		mg/kg	1	3	10	50	1.0	<1.0	<1.0
Zinc		mg/kg	140	500	1500	7500	10	16[<a]< td=""><td>15[<a]< td=""></a]<></td></a]<>	15[<a]< td=""></a]<>

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable pour l'interprétation réglementaire.

4838331-4838346 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Montréal (sauf celles marquées d'un *)

Amar Bellahsene 2011-214

Jung.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 23M004215

N° DE PROJET: 5758

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: LE GROUPE SCP ENVIRONNEMENT INC PRÉLEVÉ PAR:G.P.

À L'ATTENTION DE: Gregory Pereira LIEU DE PRÉLÈVEMENT: C.U.M.O.

Hydrocarbures aromatiques polycycliques (HAP) (sol)

DATE DE RÉCEPTION: 2023-03	-09							1	DATE DU RAPPORT: 2023-03-10
				IDENTIFI	CATION DE L'É			MG20-5758-02	
						MATRICE:	Sol	Sol	
					DATE D'ÉCHAN	TILLONNAGE:	2023-02-24 13:25	2023-02-24 13:25	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	4838331	4838346	
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Benzo(a)anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo(a)pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (b,j,k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	
Benzo(c)phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Benzo(g,h,i)pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo(a,h)anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	
Dibenzo(a,i)pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo(a,h)pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo(a,l)pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Diméthyl-7,12benzo(a)anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Indéno(1,2,3-cd)pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Méthyl-3cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Méthyl-1naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Méthyl-2naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Diméthyl-1,3naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Triméthyl-2,3,5naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures sur les centificats d'AGAT sont protégées par des mots de passe et les signatures rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 23M004215

N° DE PROJET: 5758

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: LE GROUPE SCP ENVIRONNEMENT INC PRÉLEVÉ PAR:G.P.

À L'ATTENTION DE: Gregory Pereira LIEU DE PRÉLÈVEMENT: C.U.M.O.

103

88

104

Hydrocarbures aromatiques polycycliques (HAP) (sol)

DATE DE RECEPTION: 2023-03	3-09							ט	ATE DU KAPPORT: 202	23-03-10
				IDENTIFIC	CATION DE L'É	CHANTILLON:	MG20-5758-01	MG20-5758-02		
						MATRICE:	Sol	Sol		
					DATE D'ÉCHAN	TILLONNAGE:	2023-02-24 13:25	2023-02-24 13:25		
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	4838331	4838346		
Humidité	%					0.1	0.1	0.1		
Étalon de recouvrement	Unités			Limites						

Pérylène-D12	%	50-140	72	70
Commentaires:	LDR - Limite de détection rapportée;	C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère C	QC PTC 2016 B, C se réfère QC F	PTC 2016 C, D se réfère QC RESC (Annexe 1)
	Les valeurs des critères sont uniquem	ent fournies comme référence générale. Les critères fournis peuven	t être ou ne pas être pertinents po	our l'utilisation prévue. Se référer directement à la norme applicable

4838331-4838346 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

50-140

50-140

Les analyses ont été effectuées par AGAT Montréal (sauf celles marquées d'un *)

pour l'interprétation réglementaire.

%

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures sur les centificats d'AGAT sont protégées par des mots de passe et les signatures rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

Acénaphtène-D10

Fluoranthène-D10

N° BON DE TRAVAIL: 23M004215

N° DE PROJET: 5758

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: LE GROUPE SCP ENVIRONNEMENT INC PRÉLEVÉ PAR:G.P.

À L'ATTENTION DE: Gregory Pereira LIEU DE PRÉLÈVEMENT: C.U.M.O.

Hydrocarbures pétroliers C10-C50 (sol)

DATE DE RÉCEPTION: 2023-03-0	9							D	OATE DU RAPPORT: 2023-03-10
				IDENTIF	ICATION DE L'É	CHANTILLON:	MG20-5758-01	MG20-5758-02	
						MATRICE:	Sol	Sol	
					DATE D'ÉCHAN	TILLONNAGE:	2023-02-24 13:25	2023-02-24 13:25	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	4838331	4838346	
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	
Humidité	%					0.1	0.1	0.1	
Étalon de recouvrement	Unités			Limites					
Nonane	%			60-140			94	104	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

483831-4838346 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Montréal (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures sur les centificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

Contrôle de qualité

NOM DU CLIENT: LE GROUPE SCP ENVIRONNEMENT INC

N° DE PROJET: 5758 PRÉLEVÉ PAR:G.P. N° BON DE TRAVAIL: 23M004215 À L'ATTENTION DE: Gregory Pereira LIEU DE PRÉLÈVEMENT:C.U.M.O.

	Analyse des Sols ate du rapport: 2023-03-10 DUPLICATA MATÉRIAU DE RÉFÉRENCE BLANC FORTIFIÉ ÉCH. FORTIFIÉ														
Date du rapport: 2023-03-10			ı	DUPLICAT	4	MATÉ	RIAU DE RI	ÉFÉREN	ICE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
				·		méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
PRTC - Métaux Extractibles Total	ıx (sol)														
Argent	4838481		<0.5	<0.5	NA	< 0.5	97%	70%	130%	98%	80%	120%	116%	70%	130%
Arsenic	4838481		6	<5	NA	< 5	110%	70%	130%	103%	80%	120%	111%	70%	130%
Baryum	4838481		179	173	3.4	< 20	86%	70%	130%	86%	80%	120%	NA	70%	130%
Cadmium	4838481		< 0.9	< 0.9	NA	< 0.9	86%	70%	130%	90%	80%	120%	93%	70%	130%
Chrome	4838481		107	105	NA	< 45	89%	70% 130%		92%	80%	120%	NA	70%	130%
Cobalt	4838481		<15	<15	NA	< 15	81%	70% 130%		89%	80% 120		76%	70%	130%
Cuivre	4838481		57	54	NA	< 40	85%	70%	130%	94%	80%	120%	96%	70%	130%
Étain	4838481		<5	<5	NA	< 5	127%	70%	130%	109%	80%	120%	113%	70%	130%
Manganèse	4838481		787	740	6.2	< 10	85%	70%	130%	102%	80%	120%	NA	70%	130%
Molybdène	4838481		<2	<2	NA	< 2	91%	70%	130%	92%	80%	120%	93%	70%	130%
Nickel	4838481		67	65	NA	< 30	92%	70%	130%	100%	80%	120%	87%	70%	130%
Plomb	4838481		<30	<30	NA	< 30	82%	70%	130%	87%	80%	120%	82%	70%	130%
Sélénium	4838481		<1.0	<1.0	NA	< 1.0	86%	70%	130%	86%	80%	120%	120%	70%	130%
Zinc	4838481		96	94	2.1	< 10	84%	70%	130%	89%	80%	120%	91%	70%	130%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Le pourcentage de récupération du MRC peut être en dehors du critère d'acceptabilité s'il est conforme à l'écart du certificat du matériau de référence.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restants, un écart de 10% supplémentaire est acceptable.

Certifié par:

Amar Bellahsene 2011-214

Contrôle de qualité

NOM DU CLIENT: LE GROUPE SCP ENVIRONNEMENT INC

N° DE PROJET: 5758 PRÉLEVÉ PAR:G.P. N° BON DE TRAVAIL: 23M004215 À L'ATTENTION DE: Gregory Pereira LIEU DE PRÉLÈVEMENT:C.U.M.O.

Analyse organique de trace Date du rapport: 2023-03-10 DUPLICATA MATÉRIAU DE RÉFÉRENCE BLANC FORTIFIÉ ÉCH. FORTIFIÉ															
Date du rapport: 2023-03-10				DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	ICE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	ΞÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
TANAMETRE	201		Бар "т	Dup #2	70 a court	méthode	70 Redup.	Inf.	Sup.	70 recoup.	Inf.	Sup.	, in Redup.	Inf.	Sup.
Hydrocarbures aromatiques poly	cycliques (HAP) (sol)												
Acénaphtène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	139%	50%	140%	108%	50%	140%
Acénaphtylène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	130%	50%	140%	100%	50%	140%
Anthracène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	109%	50%	140%	103%	50%	140%
Benzo(a)anthracène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	90%	50%	140%	112%	50%	140%
Benzo(a)pyrène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	88%	50%	140%	84%	50%	140%
Benzo (b) fluoranthène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	85%	50%	140%	81%	50%	140%
Benzo (j) fluoranthène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	91%	50%	140%	83%	50%	140%
Benzo (k) fluoranthène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	93%	50%	140%	85%	50%	140%
Benzo(c)phénanthrène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	86%	50%	140%	107%	50%	140%
Benzo(g,h,i)pérylène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	101%	50%	140%	91%	50%	140%
Chrysène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	97%	50%	140%	90%	50%	140%
Dibenzo(a,h)anthracène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	94%	50%	140%	84%	50%	140%
Dibenzo(a,i)pyrène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	76%	50%	140%	69%	50%	140%
Dibenzo(a,h)pyrène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	55%	50%	140%	52%	50%	140%
Dibenzo(a,l)pyrène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	90%	50%	140%	83%	50%	140%
Diméthyl-7,12benzo(a)anthracène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	63%	50%	140%	58%	50%	140%
Fluoranthène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	86%	50%	140%	104%	50%	140%
Fluorène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	129%	50%	140%	99%	50%	140%
Indéno(1,2,3-cd)pyrène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	92%	50%	140%	82%	50%	140%
Méthyl-3cholanthrène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	83%	50%	140%	81%	50%	140%
Naphtalène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	112%	50%	140%	109%	50%	140%
Phénanthrène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	104%	50%	140%	96%	50%	140%
Pyrène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	83%	50%	140%	100%	50%	140%
Méthyl-1naphtalène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	131%	50%	140%	110%	50%	140%
Méthyl-2naphtalène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	125%	50%	140%	113%	50%	140%
Diméthyl-1,3naphtalène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	130%	50%	140%	100%	50%	140%
Triméthyl-2,3,5naphtalène	4838390		<0.1	<0.1	NA	< 0.1	NA	50%	140%	128%	50%	140%	98%	50%	140%
Acénaphtène-D10	4838390		132	123	7.2	96	NA	50%	140%	121%	50%	140%	88%	50%	140%
Fluoranthène-D10	4838390		94	87	8.5	78	NA	50%	140%	69%	50%	140%	84%	50%	140%
Pérylène-D12	4838390		77	72	7.1	63	NA	50%	140%	71%	50%	140%	67%	50%	140%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Hydrocarbures pétroliers C10-C50 (sol)

Hydrocarbures pétroliers C10 à C50	4838390	< 100	< 100	NA	< 100	NA	60%	140%	111%	60%	140%	106%	60%	140%
Nonane	4838390	86%	107%	0.0	97	NA	60%	140%	101%	60%	140%	116%	60%	140%

Contrôle de qualité

NOM DU CLIENT: LE GROUPE SCP ENVIRONNEMENT INC

N° DE PROJET: 5758 PRÉLEVÉ PAR:G.P. N° BON DE TRAVAIL: 23M004215 À L'ATTENTION DE: Gregory Pereira LIEU DE PRÉLÈVEMENT:C.U.M.O.

Analyse organique de trace (Suite)															
Date du rapport: 2023-03-10	4	MATÉ	RIAU DE RI	ÉFÉREN	CE	BLANG	FORTI	FIÉ	ÉCH.	FORTIF	ΊÉ				
PARAMÈTRE	PARAMÈTRE Lot N° ée						% Récup.	Lim	ites	% Récup.		ites	% Récup.	Lim	nites
					% d'écart	méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Sommaire de méthode

NOM DU CLIENT: LE GROUPE SCP ENVIRONNEMENT INC

N° DE PROJET: 5758 PRÉLEVÉ PAR:G.P. N° BON DE TRAVAIL: 23M004215 À L'ATTENTION DE: Gregory Pereira LIEU DE PRÉLÈVEMENT:C.U.M.O.

PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols	•	•		•	
Argent	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Arsenic	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Baryum	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Cadmium	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Chrome	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Cobalt	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Cuivre	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Étain	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Manganèse	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Molybdène	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Nickel	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Plomb	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Sélénium	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Zinc	2023-03-10	2023-03-10	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES

Sommaire de méthode

NOM DU CLIENT: LE GROUPE SCP ENVIRONNEMENT INC

N° DE PROJET: 5758 PRÉLEVÉ PAR:G.P. N° BON DE TRAVAIL: 23M004215 À L'ATTENTION DE: Gregory Pereira LIEU DE PRÉLÈVEMENT:C.U.M.O.

PRELEVE PAR.G.P.				LIEU DE PRELEVEINIENT.	0.0.111.0.
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse organique de trace				<u>'</u>	•
Acénaphtène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Acénaphtylène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Anthracène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo(a)anthracène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo(a)pyrène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo (b) fluoranthène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo (j) fluoranthène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo (k) fluoranthène	2023-03-10	2023-03-10	ORG-100-5102	MA.400-HAP 1.1	GC/MS
Benzo (b,j,k) fluoranthène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo(c)phénanthrène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo(g,h,i)pérylène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Chrysène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Dibenzo(a,h)anthracène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Dibenzo(a,i)pyrène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Dibenzo(a,h)pyrène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Dibenzo(a,I)pyrène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Diméthyl-7,12benzo(a)anthracène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Fluoranthène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Fluorène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Indéno(1,2,3-cd)pyrène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Méthyl-3cholanthrène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Naphtalène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Phénanthrène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Pyrène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Méthyl-1naphtalène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Méthyl-2naphtalène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Diméthyl-1,3naphtalène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Triméthyl-2,3,5naphtalène	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Acénaphtène-D10	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Fluoranthène-D10	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Pérylène-D12	2023-03-10	2023-03-10	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Humidité	2023-03-09	2023-03-09	LAB-111-4040F	MA.100-ST 1.1	BALANCE
Hydrocarbures pétroliers C10 à C50	2023-03-09	2023-03-09	ORG-100-5104F	MA.400-HYD. 1.1	GC/FID
Nonane	2023-03-09	2023-03-09	ORG-100-5104F	MA.400-HYD. 1.1	GC/FID
Humidité	2023-03-09	2023-03-09	LAB-111-4040F	MA.100-ST 1.1	BALANCE

9770 Route Transcanadienne St-Laurent, Qc, H4S 1V9 Tél.: 514.337.1000 fr.agatlabs.com

350 Rue Franquet Québec, Qc, G1P 4P3 Tél: 418.266.5511

fr.agatlabs.com

1	Température à l'arrivée:	
-	C90000 40	
	Glace Bloc refrigerant Aucun	
_	Scélé légal intact: Douis DNos DNA	

À l'usage exclusif du laboratoire

Bon de travail AGAT:

Nb. de glacières:

Chaîne de traçabilité Environnement					Eau	pota	able I	RQEP	(rése	eau)	- Ve	uillez	utilisei	la C	DT dı	MEL	.cc		N-414			ice	В	ос гент	igérant [Aucu		
Information pour le rapport Compagnie: School Grade C		1. No Co 2. No	om:	Jes Pa	ef cu		(Zer Ssi	ei CPS	2	a.	R.c	PI Co Ea Ea	CME au cor au rés au rés I Sanit	SOMP SOMP Urg. S		SC	E F	Délai Inviron Réguli	s d'a onne ier: (t: (intactionally: nally: nenta 5 à Mē 2 jo 3 jo	se real: 7 jour ours	e quis urs	(jou Hau l Régu Urge	e Requi	vrables olution 10 <	s) 1:) à 15 jo 10 jours	
Facturé à Même adresse : Compagnie : Contact : Courriel : Adresse : Bon de commande : Soumission : Commentaires: Matrice (légende) EP Eau potable EB Eau brute EPI E E E E E E E E E E E E E E E E E E	cau de piscine	bures pétroliers C10-C50]	BTEX HAM HAC-HAM THM	glycol 🗆	Huiles et graisses: Minérales ☐ Totales ☐	OP ☐ Herbicides ☐	MS) ☐ Indice phénoli	SOI: ONIK□ ISNIK□ Balayage□ eau: 6Mk□ 17Mk□ Balayage□		terrain 🗍	Metaux (speciner): (é ☐ Bromates ☐ Conductivité ☐			H,□ NTK□ NO2+NO3□	Solides: Totaux ☐ Dissous ☐ MES ☐ MESV ☐	- 13	NO ₃ □ o-PO4□ COD□	Turbidité	DBO ₅ DBO ₅ carbonee DBO ₅ Soluble ODD Colformes Totalix Féralix Feralix		DBO₅ Soluble ☐ DBO₅ Carbonée Soluble ☐	HR/MS: Dioxines/Furanes ☐ HAP ☐ BPC ☐ NP ☐ NPE ☐				
DENTIFICATION DE L'ÉCHANTILLON PRÉLÈVEMENT MATRI DATE (AVMM/JJ) HEURE MATRI MG 20_5758-01 23/02/24 10/00 5 MG 20_5758-02 23/02/24 10/00 5 MG 20_5758-02 23/02/24 10/00 5 MG 20_5758-02 23/02/24 10/00 5	CE NB. DE CONTENANTS	X Hydrocarbures	X	BTEX U	Éthylène g	Huiles el	Pesticide	Phénois	Métaux - eau:	Hg□ Se□	7	Netaux (specin	Alcalinité	Cyanure	□ 000	NH ₃ + NH ₄	Solides:	Sulfures	□ Hq	Absorba	Coliform	Microbic	DBO _s Sc	HR/MS	RMD []			
						Assurance of the second										3.		- 1 1000 1000 1000						12	311	11%	312	::74
Echantillon remis par (nome) lettres moulées et signature) Date Echantillon remis par (nom en lettres moulées et signature) Date	(AA/MM/JJ) Heu (AA/MM/JJ) Heu	2.'	00	Éct		1			-	_	lées et s	_	_	2		9.		te (AA/]_	-2	eure eure	2	3		Page _		e	_